Recruitment of a ribosomal release factor for light- and stress-dependent regulation of petB transcript stability in Arabidopsis chloroplasts.

نویسندگان

  • Rhea Stoppel
  • Lina Lezhneva
  • Serena Schwenkert
  • Salar Torabi
  • Susanne Felder
  • Karin Meierhoff
  • Peter Westhoff
  • Jörg Meurer
چکیده

Land plant genomes encode four functional ribosomal peptide chain release factors (Prf) of eubacterial origin, two (PrfA and PrfB homologs) for each endosymbiotic organelle. Formerly, we have shown that the Arabidopsis thaliana chloroplast-localized PrfB homolog, PrfB1, is required not only for termination of translation but also for stabilization of UGA stop codon-containing chloroplast transcripts. A previously undiscovered PrfB-like protein, PrfB3, is localized to the chloroplast stroma in a petB RNA-containing complex and found only in vascular plants. Highly conserved positions of introns unequivocally indicate that PrfB3 arose from a duplication of PrfB1. Notably, PrfB3 is lacking the two most important tripeptide motifs characteristic for all eubacterial and organellar PrfB homologs described so far: the stop codon recognition motif SPF and the catalytic center GGQ for peptidyl-tRNA hydrolysis. Complementation studies, as well as functional and molecular analyses of two allelic mutations in Arabidopsis, both of which lead to a specific deficiency of the cytochrome b₆f complex, revealed that PrfB3 is essentially required for photoautotrophic growth. Plastid transcript, polysome, and translation analyses indicate that PrfB3 has been recruited in vascular plants for light- and stress-dependent regulation of stability of 3' processed petB transcripts to adjust cytochrome b₆ levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deregulation of maize C4 photosynthetic development in a mesophyll cell-defective mutant.

During maize (Zea mays) C(4) differentiation, mesophyll (M) and bundle sheath (BS) cells accumulate distinct sets of photosynthetic enzymes, with very low photosystem II (PSII) content in BS chloroplasts. Consequently, there is little linear electron transport in the BS and ATP is generated by cyclic electron flow. In contrast, M thylakoids are very similar to those of C(3) plants and produce t...

متن کامل

HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs.

The psbB-psbT-psbH-petB-petD operon of higher plant chloroplasts is a heterogeneously composed transcriptional unit that undergoes complex RNA processing events until the mature oligocistronic RNAs are formed. To identify the nucleus-encoded factors required for the processing and expression of psbB-psbT-psbH-petB-petD transcripts, we performed mutational analysis using Arabidopsis. The allelic...

متن کامل

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

A peptide chain release factor 2 affects the stability of UGA-containing transcripts in Arabidopsis chloroplasts.

Positional cloning of the hcf109 (high chlorophyll fluorescence) mutation in Arabidopsis has identified a nucleus-encoded, plastid-localized release factor 2-like protein, AtprfB, indicating that the processes of translational termination in chloroplasts resemble those of eubacteria. Control of atprfB expression by light and tissues is connected to chloroplast development. A point mutation at t...

متن کامل

Orange protein has a role in phytoene synthase stabilization in sweetpotato

Carotenoids have essential roles in light-harvesting processes and protecting the photosynthetic machinery from photo-oxidative damage. Phytoene synthase (PSY) and Orange (Or) are key plant proteins for carotenoid biosynthesis and accumulation. We previously isolated the sweetpotato (Ipomoea batatas) Or gene (IbOr), which is involved in carotenoid accumulation and salt stress tolerance. The mol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 23 7  شماره 

صفحات  -

تاریخ انتشار 2011